PCI Stories


Kevin Jones

Kevin Jones
Current Organization: PCI Geomatics
Year began using PCI SW: 1996
Picture: Animation of incidence angles over Vancouver

Having just started my career with RADARSAT International (RSI) in Vancouver, I took a keen interest in working with imagery collected from RADARSAT-1, which had only recently been launched (1995). At the time, not many people knew about Radar imagery, which was very different from satellite optical images such as Landsat. I started to work in the company image processing lab where PCI software was available in order to generate some illustrations that were used in teaching and promotional material.

At the time the RADARSAT-1 images were stored on Exabyte tapes, which I learned how to load and display in Image Works. Using the same location (Vancouver) I created illustrations showing the effects of incidence angles on mountainous features. I spent many long evenings learning all about SAR imagery with several sets of RADARSAT-1 images, using PCI Software. The material I created lived on for many years and was used to train people around the world on how to best acquire SAR imagery, taking into account local terrain.



Houwteq 5

Wolfgang Luck
Current Organization: PCI Geomatics
Year began using PCI SW: 2000

My career is deeply entwined with the use of PCI Geomatica and can be described as a love affair with this technology.
I got exposed to PCI Geomatica in 2001 while working as a research intern at Infoterra GmbH now Airbus DS. The goal was to automate image processing chains. After returning back to South Africa, I made my involvement at the Centre for Geographical Analysis at the University of Stellenbosch dependent on the availability of PCI Geomatica for my future work. In 2005 I was one of the beta testers of Geomatica 10, which for the first time allowed the automation of an end to end workflow for the radiometric and geometric correction of optical satellite imagery. First workflows supported Spot and Landsat imagery.

The Satellite Applications Centre of the Council for Scientific and Industrial Research, South Africa's satellite ground receiving station, negotiated open access to Spot 2,4,&5 satellite imagery covering South Africa in 2006. I won one of the first contracts to process 400 Spot 2 /4 scenes for the South African Police with these PCI based processing chains. It took a bit more than one day to process all imagery. This drew the attention of the Satellite Applications Centre which at the time could process only 4 Spot scenes a day using manual workflows. After comparing my PCI based workflows with that of Pixel Factory, the Satellite Application Centre bought my workflows and employed me as Technology Manager for their Earth Observation unit. I left the institution in 2011 after becoming a civil servant as part of the newly formed South African National Space Agency. I created my own company co-operating in an ecosystem of small space companies in South Africa.

We continued to develop technology around PCI Geomatica, of which a mining service is worth mentioning.  A processing chain extracting mine dump volume changes and delivering this information to a mine, on the same day imagery was acquired, raised considerable interest in the mining industry.
In mid 2016 I was privileged to join the PCI Geomatics team as Senior Scientist, where I intend to develop and implement technologies for the improved radiometric and geometric correction and processing of earth observation data.



keith gillis

Keith Gillis
Current Organization: Nova Scotia Community College
Year began using PCI SW: 2016
Picture: (Receiving PCI Geomatics Excellence in Remote Sensing Award, April 2017)

As a recent graduate of the Advanced Diploma in Geographic Sciences – Remote Sensing Concentration at the Nova Scotia Community College, I had many opportunities to work with Geomatica. For one of my projects, I was interested to understand how remote sensing imagery can be used to study climate change. One of my projects, I chose to work on the Glacier Bay National Park and Preserve, located on the South Eastern Alaska coastline, a UNESCO World Heritage Site.

This National Park contains 11 glaciers, and studying their evolution over time using Remote Sensing is an interesting climate change monitoring approach, especially given the rich multi-temporal archives available through the Lansdat series of satellites. Through the use of Geomatica, Landsat imagery was processed in order to perform quantitative analyses. Atmospheric correction and image normalization algorithms were applied to derive at surface reflectance for all multispectral bands.

The Image Channel Algorithm (ARI) was used for computing new band ratios to be applied to the RGB image. Three new band ratios were created using the ARI algorithm; Band 7 (SWIR2) / Band 4 (Red), Band 2 (Blue) / Band 5 (NIR), Band 4 (Red) / Band 6 (SWIR 1). A value of 1 was also applied to all denominators in the ratios to eliminate any possibilities of dividing by zero. In order to create the RGB composite a new raster layer was created and the ratios were assigned as follows Red: Band 7 (SWIR2) / Band 4 (Red), Green: Band 4 (Red) / Band 6 (SWIR 1), Blue: Band 2 (Blue) / Band 5 (NIR). In order to improve the visualization of the composite an Equalization enhancement was applied to the image. In order to highlight snow/ice within the scene a Normalized Difference Snow Index (NDSI), where NSDI = (Green-SWIR 1) / (Green+SWIR1), was applied and added as a pseudo-color layer.

Using band ratios and an NDSI can both aid in the analysis of Snow and Ice within Glacier Bay. The RGB image is better suited for defining clear boundaries between snow/ice and the surrounding vegetation, rocks, and open water. The index image is better suited for analyzing transition zones between glacier ice flows, glacial melt, and the open water. Both of these images could be compared temporally to other images in order to recognize the patterns of glacier retreat or advancement within Glacier Bay National Park.



Student Doing RS Project

Arpik Hakobyan
Current Organization: Memorial University of Newfoundland
Year began using PCI SW: 2016
Picture: (High School Student that participated in mini-enrichment course)

Every year in April, when University students have completed their exams and have left campus until the fall, university professors and research assistants across Canada organize mini-enrichment courses for promising young future students who can experience university life. A specific mini-enrichment course is offered at Memorial University that focuses on the use of remote sensing for monitoring local features of interest. C-Core, which is affiliated with Memorial University, supplied an aerial image of the Churchill river during the spring thaw – the data was collected from a helicopter and provided to the students in JPG format.

The project helped students to learn the simple steps that are needed in classifying a remote sensing image. The students learned concepts that relate to remote sensing and the use of an image processing software tool (Geomatica), such as: what is image, how people and computers "see" an image; differences between .jpg files and .pix files; what is a raster layer and what is a vector layer; what is a bitmap layer; what is unsupervised classification and how it is done by Geomatica; what are the mixed classes and why they occur; how to aggregate the classes and what is the best strategy of doing aggregation. By using Geomatica the students learned necessary data processing steps in remote sensing as well as fundamental remote sensing concepts and how they could be done in practice with a real-life project. Although the students created a map that included only two classes (water and ice), they learned the important theoretical and practical concepts that they can apply for having more than two classes. Through the use of Geomatica, they were able to make multiple attempts at processing and classifying the image, they could create several channels to store results with different parameters, which they could then compare. The students were also very happy and proud that PCI Geomatics is a software product that was created by Canadian Researchers and by a Canadian Company.

Social Media

Free Trials

  • geomatica-50px  Geomatica
  • gxl-50px  Learn More About GXL

Latest Tweets

RT @ArnoldHougham: @JEOS_Jena gents Marcel Urban and Kai Heckel showing their work on DSM and DTM extraction in Kruger National Park using…
RT @ArnoldHougham: Wolfgang Luck of @pcigeomatics presenting on error budgets associated with #ARD products at #LPS19. https://t.co/sVawMOO…